Kamis, 08 Desember 2011

Besaran dan Pengukuran

Fisika adalah ilmu yang mempelajari benda-benda serta fenomena dan keadaan yang terkait dengan benda-benda tersebut. Untuk menggambarkan suatu fenomena yang terjadi atau dialami suatu benda, maka didefinisikan berbagai besaran-besaran fisika. Besaran-besaran fisika ini misalnya panjang, jarak, massa, waktu, gaya, kecepatan, temperatur, intensitas cahaya, dan sebagainya. Terkadang nama dari besaran-besaran fisika tadi memiliki kesamaan dengan istilah yang dipakai dalam keseharian, tetapi perlu diperhatikan bahwa besaran-besaran fisika tersebut tidak selalu memiliki pengertian yang sama dengan istilah-istilah keseharian. Seperti misalnya istilah gaya, usaha, dan momentum, yang memiliki makna yang berbeda dalam keseharian atau dalam bahasa-bahasa sastra.

Sumber : http://mirza.staff.ugm.ac.id/fisdas/Fisdasbook.pdf

Rabu, 12 Oktober 2011

Perkalian

Dua buah vektor dapat ‘diperkalikan’. Konsep perkalian antar vektor sangat bermanfaat dalam perumusan berbagai persamaan-persamaan fisika. Konsep perkalian dalam vektor sangat berbeda dengan sekedar memperkalian dua buah bilangan (skalar), dan memiliki definisi tersendiri. Dua buah vektor dapat diperkalikan menghasilkan sebuah skalar ataupun sebuah vektor baru.
Perkalian yang menghasilkan skalar disebut sebagai perkalian skalar atau
perkalian titik (dot product), dan didefinisikan sebagai
~A· ~B = AB cos _
dengan _ adalah sudut antara vektor ~A dan ~B . Besar vektor ~C = ~A + ~B

dapat dinyatakan dalam perumusan berikut ini
C =q
(~A + ~B ) · (~A + ~B) =p
A2 + B2 + 2AB cos _
Bila ~A dan ~B dinyatakan dalam komponen-komponennya, ~A = Axˆx+Ay ˆy +
Az ˆz dan ~B = Bxˆx + By ˆy + Bz ˆz, maka~A· ~B = AxBx + AyBy + AzBz
karena ˆx · ˆy = ˆx · ˆz = ˆy · ˆz = cos 900 = 0 (saling tegak lurus), dan ˆx · ˆx =ˆy · ˆy = ˆz · ˆz = cos 00 = 1. Dengan mengalikan sebarang vektor ~A dengan
sebuah vektor basis, akan didapatkan proyeksi ~A ke arah vektor basis tadi, jadi misalnya ~a · ˆx = Ax.
Perkalian dua buah vektor yang menghasilkan sebuah vektor, disebut sebagai perkalian silang (cross product), untuk dua buah vektor ~A dan ~B
dituliskan~A× ~B = ~C
Vektor ~C di sini adalah suatu vektor yang arahnya tegak lurus terhadap bidang di mana ~A dan ~B berada, dan ditentukan oleh arah putar tangan kanan yang diputar dari ~A ke ~B . Besar vektor ~C didefinisikan sebagai
C = |~A × ~B | = AB sin
 Besar vektor ~C ini dapat diinterpretasikan sebagai luasan jajaran genjang yang dua sisinya dibatasi oleh ~A dan ~B Sesuai dengan definisinya, maka ~A× ~B = −~B × ~A. Untuk vektor-vektor basis, diperoleh ˆx× ˆy = ˆz, ˆy× ˆz = ˆx, ˆz × ˆx = ˆy, dan ˆx × ˆx = ˆy × ˆy = ˆz × ˆz = 0.
 


Vektor

Sebagai contoh yang mudah untuk dipahami dari sebuah vektor adalah vektor posisi. Untuk menentukan posisi sebuah titik relatif terhadap titik yang lain, kita harus memiliki sistem koordinat. Dalam ruang berdimensi tiga, dibutuhkan sistem koordinat, x, y, z untuk mendiskripsikan posisi suatu titik relatif terhadap suatu titik asal (O). 

Penjumlahan Vektor
Dari konsep vektor posisi juga dikembangkan konsep penjumlahan vektor.
Vektor posisi titik A adalah ~A, sedangkan posisi titik B ditinjau dari titik A adalah B. Vektor posisi titik B adalah vektor ~C, dan ~C dapat dinyatakan sebagai jumlahan vektor ~A dan vektor ~B , ~A + ~B = ~C .

Negatif dari suatu vektor ~A dituliskan sebagai ~A dan didefinisikan sebagai sebuah vektor dengan besar yang sama dengan besar vektor ~A tetapi dengan arah yang berlawanan, sehingga ~A + (1)~A = 0. Dari sini konsep pengurangan vektor muncul, jadi ~A ~B = ~A + (1)~B.
Aljabar vektor bersifat komutatif dan asosiatif. Jadi ~A + ~B = ~B + ~A, dan ~A + (~B + ~C ) = (~A + ~B) + ~C
Dalam ruang berdimensi tiga terdapat paling banyak tiga vektor yang dapat saling tegak lurus. Vektor-vektor yang saling tegak lurus ini dapat dijadikan vektor-vektor basis. Dalam sistem koordinat kartesan, sebagai vektor-vektor basis biasanya diambil vektor-vektor yang mengarah ke arah sumbu x, y, dan z positif, dan diberi simbol ˆx, ˆy, dan ˆz. Vektor-vektor basis ini juga dipilih bernilai satu. Sehingga sebarang vektor ~A dalam ruang dimensi tiga dapat dinyatakan sebagai jumlahan vektor-vektor basis dengan koefisien-koefisien Ax,Ay,Az yang disebut sebagai komponen vektor dalam arah basis x, y dan z.
~A = Axˆx + Ay ˆy + Az ˆz
Dari trigonometri dapat diketahui bahwa bila sudut antara vektor ~A
dengan sumbu x, y, dan z adalah _x, _y, dan _z, maka Ax = Acos _x,
Ay = Acos _y, dan Az = Acos _z, dengan A adalah besar ~A. Dari teorema


Fisika Dasar

Fisika adalah ilmu yang mempelajari benda-benda serta fenomena dan keadaan
yang terkait dengan benda-benda tersebut. Untuk menggambarkan suatu
fenomena yang terjadi atau dialami suatu benda, maka didefinisikan berbagai
besaran-besaran fisika. Besaran-besaran fisika ini misalnya panjang,
jarak, massa, waktu, gaya, kecepatan, temperatur, intensitas cahaya, dan
sebagainya. Terkadang nama dari besaran-besaran fisika tadi memiliki kesamaan
dengan istilah yang dipakai dalam keseharian, tetapi perlu diperhatikan
bahwa besaran-besaran fisika tersebut tidak selalu memiliki pengertian
yang sama dengan istilah-istilah keseharian. Seperti misalnya istilah
gaya, usaha, dan momentum, yang memiliki makna yang berbeda dalam
keseharian atau dalam bahasa-bahasa sastra.
Antara besaran fisika yang satu dengan besaran fisika yang lain, mungkin
terdapat hubungan. Hubungan-hubungan antara besaran fisika ini dapat
dinyatakan sebagai persamaan-persamaan fisika, ketika besaran-besaran tadi
dilambangkan dalam simbol-simbol fisika, untuk meringkas penampilan ersamaannya.
Karena besaran-besaran fisika tersebut mungkin saling terkait,
maka tentu ada sejumlah besaran yang mendasari semua besaran fisika yang
ada, yaitu semua besaran-besaran fisika dapat dinyatakan dalam sejumlah
tertentu besaran-besaran fisika, yang disebut sebagai besaran-besaran dasar.
Terdapat tujuh buah besaran dasar fisika (dengan satuannya masing-masing)
1. panjang (meter)
2. massa (kilogram)
3. waktu (sekon)
4. arus listrik (ampere)
5. temperatur (kelvin)
6. jumlah zat (mole)
7. intensitas cahaya (candela)
Satuan SI untuk panjang adalah meter dan satu meter didefinisikan sebagai
1650763,73 kali panjang gelombang cahaya transisi 2p10 - 5d5 isotop Kr86.
Satuan SI untuk waktu adalah sekon dan satu sekon didefinisikan sebagai 9